Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

Contribution of indirect effects to clustered damage in DNA irradiated with protons

Authors: K, Pachnerová Brabcová; V, Štěpán; M, Karamitros; M, Karabín; P, Dostálek; S, Incerti; M, Davídková; +1 Authors

Contribution of indirect effects to clustered damage in DNA irradiated with protons

Abstract

Protons are the dominant particles both in galactic cosmic rays and in solar particle events and, furthermore, proton irradiation becomes increasingly used in tumour treatment. It is believed that complex DNA damage is the determining factor for the consequent cellular response to radiation. DNA plasmid pBR322 was irradiated at U120-M cyclotron with 30 MeV protons and treated with two Escherichia coli base excision repair enzymes. The yields of SSBs and DSBs were analysed using agarose gel electrophoresis. DNA has been irradiated in the presence of hydroxyl radical scavenger (coumarin-3-carboxylic acid) in order to distinguish between direct and indirect damage of the biological target. Pure scavenger solution was used as a probe for measurement of induced OH· radical yields. Experimental OH· radical yield kinetics was compared with predictions computed by two theoretical models-RADAMOL and Geant4-DNA. Both approaches use Geant4-DNA for description of physical stages of radiation action, and then each of them applies a distinct model for description of the pre-chemical and chemical stage.

Keywords

Kinetics, DNA Repair, Coumarins, Hydroxyl Radical, Escherichia coli Proteins, Dose-Response Relationship, Radiation, DNA, Protons, DNA Damage, Plasmids

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!