Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao zbMATH Openarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
The Quarterly Journal of Mathematics
Article . 1995 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

INFRA-SOLVMANIFOLDS OF TYPE (R)

Infra-solvmanifolds of type (R)
Authors: Lee, Kyung Bai;

INFRA-SOLVMANIFOLDS OF TYPE (R)

Abstract

Für eine einfach zusammenhängende auflösbare Liesche Gruppe \(G\) wird das semidirekte Produkt \(\text{Aff} (G):=\Aut (G) \ltimes G\) als affine Gruppe von \(G\) bezeichnet. Ist nun \(\Gamma\) ein cokompaktes Gitter in \(G\) und \(\pi\leq\text{Aff}(G)\) eine torsionsfreie endliche Erweiterung von \(\Gamma\), \(\Gamma \vartriangleleft \pi\), so nennt man den Quotienten \(\pi \backslash G\) eine Infrasolvmannigfaltigkeit. Speziell werden in der vorliegenden Arbeit solche Mannigfaltigkeiten vom Typ \((R)\) untersucht, was besagt, daß für jedes \(X\in {\mathfrak g}\), \({\mathfrak g}\) die Liesche Algebra von \(G\), das Spektrum von \(\text{ad} (X)\) reell ist. Unter diesen Umständen ist nach einem Ergebnis von Dixmier die Exponentialabbildung \({\mathfrak g} \to G\) ein Diffeomorphismus, und Gorbatsevich hat einen Starrheitssatz für cokompakte Gitter bewiesen. Wie der Autor zeigt, hat man auch für Infrasolvmannigfaltigkeiten vom Typ \((R)\) einen Starrheitssatz: Isomorphe \(\pi\)'s in derselben affinen Gruppe sind konjugiert. Ferner wird ein Kriterium dafür gegeben, daß eine abstrakt gegebene endliche Erweiterung \(\Gamma \vartriangleleft \pi\), \(\Gamma\) wie oben, sich in der affinen Gruppe realisieren läßt. Außerdem liegen unterhalb jeder Solvmannigfaltigkeit im wesentlichen nur endlich viele Infrasolvmannigfaltigkeiten. Abschließende Beispiele zeigen, daß die meisten studierten Aussagen für beliebige auflösbare Liesche Gruppen falsch sind, die Voraussetzung ``Typ \((R)\)'' (oder ``Typ \((E)\)''?) also wesentlich ist.

Related Organizations
Keywords

group cohomology, rigidity, Nilpotent and solvable Lie groups, Representations of nilpotent and solvable Lie groups (special orbital integrals, non-type I representations, etc.), infrasolvmanifold, Discrete subgroups of Lie groups, finite extensions, lattice, affine group

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Average
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!