Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ QJMarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
QJM
Article
License: CC BY
Data sources: UnpayWall
QJM
Article . 2008 . Peer-reviewed
Data sources: Crossref
QJM
Article . 2008
QJM
Article
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

DXA scanning in clinical practice

Authors: A. El Maghraoui; C. Roux;

DXA scanning in clinical practice

Abstract

Dual-energy X-ray absorptiometry (DXA) is recognized as the reference method to measure bone mineral density (BMD) with acceptable accuracy errors and good precision and reproducibility. The World Health Organization (WHO) has established DXA as the best densitometric technique for assessing BMD in postmenopausal women and based the definitions of osteopenia and osteoporosis on its results. DXA allows accurate diagnosis of osteoporosis, estimation of fracture risk and monitoring of patients undergoing treatment. However, when DXA studies are performed incorrectly, it can lead to major mistakes in diagnosis and therapy. This article reviews the fundamentals of positioning, scan analysis and interpretation of DXA in clinical practice.

Keywords

Male, Reproducibility of Results, Middle Aged, Risk Assessment, Fractures, Bone, Absorptiometry, Photon, Bone Density, Predictive Value of Tests, Humans, Female, Osteoporosis, Postmenopausal

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    260
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
260
Top 1%
Top 1%
Top 1%
hybrid