
arXiv: 1810.07261
Quantization is studied from a viewpoint of field extension. If the dynamical fields and their action have a periodicity, the space of wave functions should be algebraically extended `a la Galois, so that it may be consistent with the periodicity. This was pointed out by Y. Nambu three decades ago. Having chosen quantum mechanics (one dimensional field theory), this paper shows that a different Galois extension gives a different quantization scheme. A new scheme of quantization appears when the invariance under Galois group is imposed as a physical state condition. Then, the normalization condition appears as a sum over the product of more than three wave functions, each of which is given for a different root adjoined by the field extension.
17 Pages
High Energy Physics - Theory, Quantum Physics, High Energy Physics - Theory (hep-th), FOS: Physical sciences, Mathematical Physics (math-ph), Quantum Physics (quant-ph), Mathematical Physics
High Energy Physics - Theory, Quantum Physics, High Energy Physics - Theory (hep-th), FOS: Physical sciences, Mathematical Physics (math-ph), Quantum Physics (quant-ph), Mathematical Physics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
