Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1093/oso/97...
Part of book or chapter of book . 1998 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2009
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

On storage operators

Authors: Nour, Karim;

On storage operators

Abstract

λ-calculus as such is not a computational model. A reduction strategy is needed. In this paper, we consider λ-calculus with the left reduction. This strategy has many advantages: it always terminates when applied to a normalizable λ-term and it seems more economic since we compute λ-term only when we need it. But the major drawback of this strategy is that a function must compute its argument every time it uses it. This is the reason why this strategy is not really used. In 1990 Krivine (1990b) introduced the notion of storage operators in order to avoid this problem and to simulate call-by-value when necessary. The AF2 type system is a way of interpreting the proof rules for second-order intuitionistic logic plus equational reasoning as construction rules for terms. Krivine (1990b) has shown that, by using Gödel translation from classical to intuitionistic logic (denoted byg), we can find in system AF2 a very simple type for storage operators. Historically the type was discovered before the notion of storage operator itself. Krivine (1990a) proved that as far as totality of functions is concerned second-order classical logic is conservative over second-order intuitionistic logic. To prove this, Krivine introduced the following notions: A[x] is an input (resp. output) data type if one can prove intuitionistically A[x] → Ag[x] (resp. Ag[x] → ⇁⇁A[x]). Then if A[x] is an input data type and B[x] is an output data type, then if one can prove A[x] → B[x] classically one can prove it intuitionistically. The notion of storage operator was discovered by investigating the property of all λ-terms of type Ng[x] → ⇁⇁N[x] where N[x] is the type of integers. Parigot (1992) and Krivine (1994) have extended the AF2 system to classical logic. The method of Krivine is very simple: it consists of adding a new constant, denoted by C, with the declaration С: ∀X{⇁⇁ X → X} which axiomatizes classical logic over intuitionistic logic. For the constant C, he adds a new reduction rule which is a particular case of a rule given by Felleisen (1987) for control operator.

Related Organizations
Keywords

FOS: Mathematics, Mathematics - Logic, Logic (math.LO)

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green