<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Carbohydrate-active enzyme (CAZymes) are not only the most important enzymes for bioenergy and agricultural industries, but also very important for human health, in that human gut microbiota encode hundreds of CAZyme genes in their genomes for degrading various dietary and host carbohydrates. We have built an online database dbCAN-seq (http://cys.bios.niu.edu/dbCAN_seq) to provide pre-computed CAZyme sequence and annotation data for 5,349 bacterial genomes. Compared to the other CAZyme resources, dbCAN-seq has the following new features: (i) a convenient download page to allow batch download of all the sequence and annotation data; (ii) an annotation page for every CAZyme to provide the most comprehensive annotation data; (iii) a metadata page to organize the bacterial genomes according to species metadata such as disease, habitat, oxygen requirement, temperature, metabolism; (iv) a very fast tool to identify physically linked CAZyme gene clusters (CGCs) and (v) a powerful search function to allow fast and efficient data query. With these unique utilities, dbCAN-seq will become a valuable web resource for CAZyme research, with a focus complementary to dbCAN (automated CAZyme annotation server) and CAZy (CAZyme family classification and reference database).
Internet, Base Sequence, Aspergillus oryzae, Arabidopsis, Carbohydrates, Molecular Sequence Annotation, Gastrointestinal Microbiome, Bacteroides thetaiotaomicron, Bacterial Proteins, Multigene Family, Databases, Genetic, Escherichia coli, Database Issue, Humans, Biotransformation, Genome, Bacterial, Metabolic Networks and Pathways, Software
Internet, Base Sequence, Aspergillus oryzae, Arabidopsis, Carbohydrates, Molecular Sequence Annotation, Gastrointestinal Microbiome, Bacteroides thetaiotaomicron, Bacterial Proteins, Multigene Family, Databases, Genetic, Escherichia coli, Database Issue, Humans, Biotransformation, Genome, Bacterial, Metabolic Networks and Pathways, Software
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 249 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 0.1% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |