Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nucleic Acids Resear...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Nucleic Acids Research
Article . 2020 . Peer-reviewed
License: CC BY NC
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Nucleic Acids Research
Article
License: CC BY NC
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2020
License: CC BY NC
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

G-quadruplex ligands mediate downregulation of DUX4 expression

Authors: Linda Popplewell; Mark S Searle; George Dickson; Huw E L Williams; Andrew Brennan; Alex Slater; Ngoc Lu-Nguyen; +1 Authors

G-quadruplex ligands mediate downregulation of DUX4 expression

Abstract

AbstractAbnormal DUX4 expression in skeletal muscles plays a key role in facioscapulohumeral muscular dystrophy (FSHD) pathogenesis, although the molecular mechanisms regulating DUX4 expression are not fully defined. Using bioinformatic analysis of the genomic DUX4 locus, we have identified a number of putative G-quadruplexes (GQs) forming sequences. Their presence was confirmed in synthetic oligonucleotiode sequences derived from the enhancer, promoter and transcript of DUX4 through circular dichroism and nuclear magnetic resonance analysis. We further examined the binding affinity of a naturally occurring GQ stabilizing compound, berberine, to these non-canonical genetic structures using UV–Vis and fluorescence spectroscopy. Subsequent in vitro study in FSHD patient myoblasts indicated that berberine treatment reduced DUX4 expression and also expression of genes normally switched on by DUX4. Further investigation in a mouse model overexpressing exogenous DUX4 confirmed the therapeutic effects of berberine in downregulating DUX4 protein expression, inhibiting muscle fibrosis, and consequently rescuing muscle function. Our data demonstrate for the first time that GQs are present in the DUX4 locus and that the GQ interactive ligand reduces DUX4 expression suggesting potential role of GQs in FSHD pathogenesis. Our work provides the basis of a novel therapeutic strategy for the treatment of FSHD.

Related Organizations
Keywords

Homeodomain Proteins, Male, Berberine, Gene regulation, Chromatin and Epigenetics, Down-Regulation, Ligands, Fibrosis, Muscular Dystrophy, Facioscapulohumeral, Clone Cells, Cell Fusion, G-Quadruplexes, Mice, Inbred C57BL, Myoblasts, Enhancer Elements, Genetic, Cell Line, Tumor, Animals, RNA, Messenger, Nucleotide Motifs, Muscle, Skeletal, Promoter Regions, Genetic

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    23
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
23
Top 10%
Average
Top 10%
Green
gold