Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Monthly Notices of t...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Monthly Notices of the Royal Astronomical Society
Article . 2015 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2015
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Basic properties of Fermi blazars and the ‘blazar sequence’

Authors: Xiong, Dingrong; Zhang, Xiong; Bai, Jinming; Zhang, Haojing;

Basic properties of Fermi blazars and the ‘blazar sequence’

Abstract

By statistically analyzing a large sample which includes blazars of Fermi detection (FBs) and non-Fermi detection (NFBs), we find that there are significant differences between FBs and NFBs for redshift, black hole mass, jet kinetic power from "cavity" power, broad-line luminosity, and ratio of core luminosity to absolute V-band magnitude ($R_{\rm v}$), but not for ratio of radio core to extended flux ($R_{\rm c}$) and Eddington ratio. Compared with NFBs, FBs have larger mean jet power, $R_{\rm c}$ and $R_{\rm v}$ while smaller mean redshift, black hole mass, broad-line luminosity. These results support that the beaming effect is main reason for differences between FBs and NFBs, and that FBs are likely to have a more powerful jet. For both Fermi and non-Fermi blazars, there are significant correlations between jet power and the accretion rate (traced by the broad-emission-lines luminosity), between jet power and black hole mass; for Fermi blazars, the black hole mass does not have significant influence on jet power while for non-Fermi blazars, both accretion rate and black hole mass have contributions to the jet power. Our results support the "blazar sequence" and show that synchrotron peak frequency ($��_{\rm peak}$) is associated with accretion rate but not with black hole mass.

13 pages, 1 table, 13 figures, accepted for publication in MNRAS. arXiv admin note: text overlap with arXiv:1001.0731 by other authors

Related Organizations
Keywords

High Energy Astrophysical Phenomena (astro-ph.HE), FOS: Physical sciences, Astrophysics - High Energy Astrophysical Phenomena

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    29
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
29
Top 10%
Average
Top 10%
Green
gold