Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Archivio istituziona...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Monthly Notices of the Royal Astronomical Society
Article . 2015 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2015
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Chemical evolution of the Galactic Centre

Authors: Grieco, V.; MATTEUCCI, MARIA FRANCESCA; Ryde, N.; Schultheis, M.; Uttenthaler, S.;

Chemical evolution of the Galactic Centre

Abstract

In recent years, the Galactic Center (GC) region (200 pc in radius) has been studied in detail with spectroscopic stellar data as well as an estimate of the ongoing star formation rate. The aims of this paper are to study the chemical evolution of the GC region by means of a detailed chemical evolution model and to compare the results with high resolution spectroscopic data in order to impose constraints on the GC formation history.The chemical evolution model assumes that the GC region formed by fast infall of gas and then follows the evolution of alpha-elements and Fe. We test different initial mass functions (IMFs), efficiencies of star formation and gas infall timescales. To reproduce the currently observed star formation rate, we assume a late episode of star formation triggered by gas infall/accretion. We find that, in order to reproduce the [alpha/Fe] ratios as well as the metallicity distribution function observed in GC stars, the GC region should have experienced a main early strong burst of star formation, with a star formation efficiency as high as 25 Gyr^{-1}, occurring on a timescale in the range 0.1-0.7 Gyr, in agreement with previous models of the entire bulge. Although the small amount of data prevents us from drawing firm conclusions, we suggest that the best IMF should contain more massive stars than expected in the solar vicinity, and the last episode of star formation, which lasted several hundred million years, should have been triggered by a modest episode of gas infall/accretion, with a star formation efficiency similar to that of the previous main star formation episode. This last episode of star formation produces negligible effects on the abundance patterns and can be due to accretion of gas induced by the bar. Our results exclude an important infall event as a trigger for the last starburst.

10 pages, 8 figures, accepted for publication in MNRAS

Keywords

Galaxy: evolution, 103003 Astronomie, FOS: Physical sciences, Astronomy and Astrophysic, 103004 Astrophysik, Astrophysics - Astrophysics of Galaxies, Galaxy: abundance, 103003 Astronomy, Space and Planetary Science, Astrophysics of Galaxies (astro-ph.GA), Galaxy: abundances, Galaxy: abundances; Galaxy: evolution; Astronomy and Astrophysics; Space and Planetary Science, 103004 Astrophysics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    23
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
23
Top 10%
Average
Top 10%
Green
gold
Related to Research communities