<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
handle: 11585/543846
Estimates of the mass distribution and dark-matter (DM) content of dwarf spheroidal galaxies (dSphs) are usually derived under the assumption that the effect of the tidal field of the host galaxy is negligible over the radial extent probed by kinematic data-sets. We assess the implications of this assumption in the specific case of the Fornax dSph by means of N-body simulations of a satellite orbiting around the Milky Way. We consider observationally-motivated orbits and we tailor the initial distributions of the satellite's stars and DM to match, at the end of the simulations, the observed structure and kinematics of Fornax. In all our simulations the present-day observable properties of Fornax are not significantly influenced by tidal effects. The DM component is altered by the interaction with the Galactic field (up to 20% of the DM mass within 1.6 kpc is lost), but the structure and kinematics of the stellar component are only mildly affected even in the more eccentric orbit (more than 99% of the stellar particles remain bound to the dwarf). In the simulations that successfully reproduce Fornax's observables, the dark-to-luminous mass ratio within 1.6 kpc is in the range 5-6, and up to 16-18 if measured within 3 kpc.
19 pages, 16 figures. Accepted for publication in MNRAS
Astrophysics of Galaxies (astro-ph.GA), FOS: Physical sciences, galaxies: dwarf – galaxies: individual: Fornax – galaxies: kinematics and dynamics – galaxies: structure – dark matter, Astrophysics - Astrophysics of Galaxies
Astrophysics of Galaxies (astro-ph.GA), FOS: Physical sciences, galaxies: dwarf – galaxies: individual: Fornax – galaxies: kinematics and dynamics – galaxies: structure – dark matter, Astrophysics - Astrophysics of Galaxies
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 31 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |