Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ CORE (RIOXX-UK Aggre...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Monthly Notices of the Royal Astronomical Society
Article . 2015 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2015
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

What are protoclusters? – Defining high-redshift galaxy clusters and protoclusters

Authors: Muldrew, Stuart I.; Hatch, N. A.; Cooke, E. A.;

What are protoclusters? – Defining high-redshift galaxy clusters and protoclusters

Abstract

We explore the structures of protoclusters and their relationship with high redshift clusters using the Millennium Simulation combined with a semi-analytic model. We find that protoclusters are very extended, with 90 per cent of their mass spread across $\sim35\,h^{-1}{\rm Mpc}$ comoving at $z=2$ ($\sim30\, \rm{arcmin}$). The `main halo', which can manifest as a high redshift cluster or group, is only a minor feature of the protocluster, containing less than 20 per cent of all protocluster galaxies at $z=2$. Furthermore, many protoclusters do not contain a main halo that is massive enough to be identified as a high redshift cluster. Protoclusters exist in a range of evolutionary states at high redshift, independent of the mass they will evolve to at $z=0$. We show that the evolutionary state of a protocluster can be approximated by the mass ratio of the first and second most massive haloes within the protocluster, and the $z=0$ mass of a protocluster can be estimated to within 0.2 dex accuracy if both the mass of the main halo and the evolutionary state is known. We also investigate the biases introduced by only observing star-forming protocluster members within small fields. The star formation rate required for line-emitting galaxies to be detected is typically high, which leads to the artificial loss of low mass galaxies from the protocluster sample. This effect is stronger for observations of the centre of the protocluster, where the quenched galaxy fraction is higher. This loss of low mass galaxies, relative to the field, distorts the size of the galaxy overdensity, which in turn can contribute to errors in predicting the $z=0$ evolved mass.

14 pages, 14 figures, accepted to MNRAS

Country
United Kingdom
Related Organizations
Keywords

methods: statistical, Cosmology and Nongalactic Astrophysics (astro-ph.CO), Galaxies: Formation, FOS: Physical sciences, Astrophysics - Astrophysics of Galaxies, 520, methods: numerical, Methods: Statistical, galaxies: clusters: general, cosmology: theory, Methods: Numerical, Astrophysics of Galaxies (astro-ph.GA), Galaxies: Evolution, galaxies: formation, galaxies: evolution, Galaxies: Clusters: General, Cosmology: Theory, Astrophysics - Cosmology and Nongalactic Astrophysics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    171
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
171
Top 1%
Top 10%
Top 1%
Green
gold