Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Monthly Notices of t...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Monthly Notices of the Royal Astronomical Society
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HAL-INSU
Article . 2025
License: CC BY
Data sources: HAL-INSU
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HAL Sorbonne Université
Article . 2025
License: CC BY
https://dx.doi.org/10.48550/ar...
Article . 2024
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Effects of superradiance in active galactic nuclei

Authors: Priyanka Sarmah; Himanshu Verma; Kingman Cheung; Joseph Silk;

Effects of superradiance in active galactic nuclei

Abstract

ABSTRACT A supermassive black hole (SMBH) at the core of an active galactic nucleus (AGN) provides room for the elusive ultra-light scalar particles to be produced through a phenomenon called superradiance. This phenomenon produces a cloud of scalar particles around the black hole by draining its spin angular momentum. In this work, we present a study of the superradiant instability due to a scalar field in the vicinity of the central SMBH in an AGN. We begin by showing that the time evolution of the gravitational coupling $\alpha$ in a realistic ambiance created by the accretion disc around the SMBH in AGN leads to interesting consequences such as the amplified growth of the scalar cloud, enhancement of the gravitational wave emission rate, and appearance of higher modes of superradiance within the age of the Universe. We then explore the consequence of superradiance on the characteristics of the AGN. Using the Novikov–Thorne model for an accretion disc, we divide the full spectrum into three wavelength bands – X-ray ($10^{-4}-10^{-2}~\mu$m), UV (0.010–0.4 $\mu$m), and Vis-IR (0.4–100 $\mu$m) and observe sudden drops in the time variations of the luminosities across these bands and Eddington ratio ($f_{\textrm {Edd}}$) with a characteristic time-scale of superradiance. Using a uniform distribution of spin and mass of the SMBHs in AGNs, we demonstrate the appearance of depleted regions and accumulations along the boundaries of these regions in the planes of different band luminosities and $f_{\textrm {Edd}}$. Finally, we discuss some possible signatures of superradiance that can be drawn from the observed time variation of the AGN luminosities.

Keywords

High Energy Astrophysical Phenomena (astro-ph.HE), gravitational radiation: flux, FOS: Physical sciences, stability, spin, angular momentum, field theory: scalar, X-ray, [PHYS.HPHE] Physics [physics]/High Energy Physics - Phenomenology [hep-ph], High Energy Physics - Phenomenology, scalar particle, High Energy Physics - Phenomenology (hep-ph), accretion, black hole, cloud, gravitation: coupling, AGN, [PHYS.ASTR] Physics [physics]/Astrophysics [astro-ph], Astrophysics - High Energy Astrophysical Phenomena, superradiance, enhancement, signature

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Top 10%
Average
Average
Green
gold
Related to Research communities