
arXiv: 2411.00674
handle: 1887/4179173
ABSTRACT Numerical simulations have shown that the strength of planetary magnetic fields depends on the convective energy flux emerging from planetary interiors. Here, we model the interior structure of gas giant planets using mesa, to determine the convective energy flux that can drive the generation of magnetic field. This flux is then incorporated in the Christensen et al. dynamo formalism to estimate the maximum dipolar magnetic field $B^\mathrm{(max)}_\mathrm{dip}$ of our simulated planets. First, we explore how the surface field of intensely irradiated hot Jupiters ($\sim 300\,\mathrm{ M}_{\oplus }$) and hot Neptunes ($\sim 20\,\mathrm{ M}_{\oplus }$) evolve as they age. Assuming an orbital separation of 0.1 au, for the hot Jupiters, we find that $B^\mathrm{(max)}_\mathrm{dip}$ evolves from 240 G at 500 Myr to 120 G at 5 Gyr. For hot Neptunes, the magnetic field evolves from 11 G at young ages and dies out at $\gtrsim$ 2 Gyr. Furthermore, we also investigate the effects of atmospheric mass fraction, atmospheric evaporation, orbital separations $\alpha$, and additional planetary masses on the derived $B^\mathrm{(max)}_\mathrm{dip}$. We found that $B^\mathrm{(max)}_\mathrm{dip}$ increases with $\alpha$ for very close-in planets and plateaus out after that. Higher atmospheric mass fractions lead in general to stronger surface fields, because they allow for more extensive dynamo regions and stronger convection.
Earth and Planetary Astrophysics (astro-ph.EP), FOS: Physical sciences, Astrophysics - Earth and Planetary Astrophysics
Earth and Planetary Astrophysics (astro-ph.EP), FOS: Physical sciences, Astrophysics - Earth and Planetary Astrophysics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
