
arXiv: 2307.03097
ABSTRACT Multibody dynamical interactions of binaries with other objects are one of the main driving mechanisms for the evolution of star clusters. It is thus important to bring our understanding of three-body interactions beyond the commonly employed point-particle approximation. To this end, we here investigate the hydrodynamics of three-body encounters between star–black hole (BH) binaries and single stars, focusing on the identification of final outcomes and their long-term evolution and observational properties, using the moving-mesh hydrodynamics code AREPO. This type of encounter produces five types of outcomes: stellar disruption, stellar collision, weak perturbation of the original binary, binary member exchange, and triple formation. The two decisive parameters are the binary phase angle, which determines which two objects meet at the first closest approach, and the impact parameter, which sets the boundary between violent and non-violent interactions. When the impact parameter is smaller than the semimajor axis of the binary, tidal disruptions and star-BH collisions frequently occur when the BH and the incoming star first meet, while the two stars mostly merge when the two stars meet first instead. In both cases, the BHs accrete from an accretion disc at super-Eddington rates, possibly generating flares luminous enough to be observed. The stellar collision products either form a binary with the BH or remain unbound to the BH. Upon collision, the merged stars are hotter and larger than the main sequence stars of the same mass at similar age. Even after recovering their thermal equilibrium state, stellar collision products, if isolated, would remain hotter and brighter than main sequence stars until becoming giants.
High Energy Astrophysical Phenomena (astro-ph.HE), Astrophysics - Solar and Stellar Astrophysics, FOS: Physical sciences, Astrophysics - High Energy Astrophysical Phenomena, 520, Solar and Stellar Astrophysics (astro-ph.SR)
High Energy Astrophysical Phenomena (astro-ph.HE), Astrophysics - Solar and Stellar Astrophysics, FOS: Physical sciences, Astrophysics - High Energy Astrophysical Phenomena, 520, Solar and Stellar Astrophysics (astro-ph.SR)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
