
arXiv: 2001.04479
handle: 11577/3351229 , 11585/912948
ABSTRACT We analyse the spatially resolved relation between stellar mass (M⋆) and star formation rate (SFR) in disc galaxies (i.e. the main sequence, MS). The studied sample includes eight nearby face-on grand-design spirals, e.g. the descendant of high-redshift, rotationally supported star-forming galaxies. We exploit photometric information over 23 bands, from the UV to the far-IR, from the publicly available DustPedia data base to build spatially resolved maps of stellar mass and SFRs on sub-galactic scales of 0.5–1.5 kpc, by performing a spectral energy distribution fitting procedure that accounts for both the observed and obscured star formation processes, over a wide range of internal galaxy environments (bulges, spiral arms, and outskirts). With more than 30 000 physical cells, we have derived a definition of the local spatially resolved MS per unit area for discs, log (ΣSFR) = 0.82log (Σ*) − 8.69. This is consistent with the bulk of recent results based on optical IFU, using the H α line emission as an SFR tracer. Our work extends the analysis at lower sensitivities in both M⋆ and SFR surface densities, up to a factor of ∼10. The self-consistency of the MS relation over different spatial scales, from sub-galactic to galactic, as well as with a rescaled correlation obtained for high-redshift galaxies, clearly proves its universality.
Galaxies: evolution; Galaxies: spirals; Galaxies: star formation, Astrophysics of Galaxies (astro-ph.GA), FOS: Physical sciences, Astrophysics - Astrophysics of Galaxies
Galaxies: evolution; Galaxies: spirals; Galaxies: star formation, Astrophysics of Galaxies (astro-ph.GA), FOS: Physical sciences, Astrophysics - Astrophysics of Galaxies
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 31 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
