Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Monthly Notices of t...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Monthly Notices of the Royal Astronomical Society
Article . 2020 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2020
License: CC BY
Data sources: Datacite
versions View all 3 versions
addClaim

Demography of galactic technosignatures

Authors: Claudio Grimaldi;

Demography of galactic technosignatures

Abstract

ABSTRACT Probabilistic arguments about the existence of technological life beyond Earth traditionally refer to the Drake equation to draw possible estimates of the number of technologically advanced civilizations releasing, either intentionally or not, electromagnetic emissions in the Milky Way. Here, we introduce other indicators than Drake’s number ND to develop a demography of artificial emissions populating the Galaxy. We focus on three main categories of statistically independent signals (isotropic, narrow beams, and rotating beacons) to calculate the average number NG of emission processes present in the Galaxy and the average number of them crossing Earth, $\bar{k}$, which is a quantity amenable to statistical estimation from direct observations. We show that $\bar{k}$ coincides with ND only for isotropic emissions, while $\bar{k}$ can be orders of magnitude smaller than ND in the case of highly directional signals. We further show that while ND gives the number of emissions being released at the present time, NG considers also the signals from no longer active emitters but whose emissions still occupy the Galaxy. We find that as long as the average longevity of the emissions is shorter than about 105 yr, NG is fully determined by the rate of emissions alone, in contrast to ND and $\bar{k}$ which depend also on the emission longevity. Finally, using analytic formulas of NG, ND, and $\bar{k}$ determined for each type of emission processes here considered, we provide a comprehensive overview of the values these quantities can possibly achieve as functions of the emission birthrates, longevities, and directionality.

Keywords

Earth and Planetary Astrophysics (astro-ph.EP), Astrophysics of Galaxies (astro-ph.GA), FOS: Physical sciences, Astrophysics - Instrumentation and Methods for Astrophysics, Astrophysics - Astrophysics of Galaxies, Instrumentation and Methods for Astrophysics (astro-ph.IM), Astrophysics - Earth and Planetary Astrophysics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Top 10%
Average
Average
Green
gold