
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>ABSTRACT We explore the significance of bars in triggering central star formation (SF) and active galactic nucleus (AGN) activity for spiral galaxy evolution using a volume-limited sample with 0.020 < z < 0.055, Mr < −19.5, and σ > 70 km s−1 selected from Sloan Digital Sky Survey Data Release 7. On a central SF rate–σ plane, we measure the fraction of galaxies with strong bars in our sample and also the AGN fractions for barred and non-barred galaxies, respectively. The comparison between the bar and AGN fractions reveals a causal connection between the two phenomena of SF quenching and AGN activity. A massive black hole and abundant gas fuels are sufficient conditions to trigger AGNs. We infer that the AGNs triggered by satisfying the two conditions drive the strong AGN feedback, suddenly suppressing the central SF and leaving the SF sequence. We find that in galaxies where either of the two conditions is not sufficient, bars are a great help for the AGN triggering, accelerating the entire process of evolution, which is particularly evident in pseudo-bulge galaxies. All of our findings are obtained only when plotted in terms of their central velocity dispersion and central SFR (not galactic scale SFR), indicating that the AGN-driven SF quenching is confined in the central kpc region.
Astrophysics of Galaxies (astro-ph.GA), FOS: Physical sciences, Astrophysics - Astrophysics of Galaxies
Astrophysics of Galaxies (astro-ph.GA), FOS: Physical sciences, Astrophysics - Astrophysics of Galaxies
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
