Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Military Medicinearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Military Medicine
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Military Medicine
Article . 2000 . Peer-reviewed
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Bond Strengths of Two Dental Bonding Systems

Authors: Vojvodić, Denis; Žabarović, Domagoj; Lončar, Ante; Jerolimov, Vjekoslav;

Bond Strengths of Two Dental Bonding Systems

Abstract

A new bonding system named Kevloc has been introduced. It is based on acrylization of the metal surface with the goal of preventing the occurrence of a marginal gap between the metal and the resin. The purpose of this investigation was to determine the values of the shear bond strength achieved using the Kevloc technique on Ag-Pd (Auropal SE) and Co-Cr (Basil S) alloys and to compare them with those obtained with the OVS technique. The shear bond strengths were measured with the Smitz-Schulmayer shear test in a universal testing machine for polymer materials. A microscope image analyzer was used to measure the thickness of bonding layers and to reveal the possible occurrence of the marginal gap with both techniques. No marginal gap was detected with either technique. Kevloc provided better results than OVS only in a group of specimens tested after polymerization. Immersion in water and thermocycling reduced the initially high bond strength values of Kevloc specimens, whereas the bond strength values of OVS specimens remained unchanged regardless of which aging treatment was used. Microscopic examination did not reveal the existence of the marginal gap for either bonding system. According to the results obtained, it can be concluded that the Kevloc bonding system does not provide better shearing bond strength than the OVS bonding system.

Related Organizations
Keywords

Bond strength, Time Factors, Acrylonitrile, Cost-Benefit Analysis, Acrylic Resins, Bone Cements, Dental Bonding, bonding system, Bond strength; bonding system, Dental Veneers, Glass Ionomer Cements, Heterocyclic Compounds, Tensile Strength, Materials Testing, Humans, Military Dentistry, Polymethyl Methacrylate, Silicate Cement

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Top 10%
Average
bronze