Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of the Royal Statistical Society Series B (Statistical Methodology)
Article . 2023 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2023
Data sources: zbMATH Open
https://dx.doi.org/10.48550/ar...
Article . 2020
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Vintage factor analysis with Varimax performs statistical inference

Authors: Rohe, Karl; Zeng, Muzhe;

Vintage factor analysis with Varimax performs statistical inference

Abstract

Abstract In the 1930s, Psychologists began developing Multiple-Factor Analysis to decompose multivariate data into a small number of interpretable factors without any a priori knowledge about those factors. In this form of factor analysis, the Varimax factor rotation redraws the axes through the multi-dimensional factors to make them sparse and thus make them more interpretable. Charles Spearman and many others objected to factor rotations because the factors seem to be rotationally invariant. Despite the controversy, factor rotations have remained widely popular among people analyzing data. Reversing nearly a century of statistical thinking on the topic, we show that the rotation makes the factors easier to interpret because the Varimax performs statistical inference; in particular, principal components analysis (PCA) with a Varimax rotation provides a unified spectral estimation strategy for a broad class of semi-parametric factor models, including the Stochastic Blockmodel and a natural variation of Latent Dirichlet Allocation. In addition, we show that Thurstone’s widely employed sparsity diagnostics implicitly assess a key leptokurtic condition that makes the axes statistically identifiable in these models. PCA with Varimax is fast, stable, and practical. Combined with Thurstone’s straightforward diagnostics, this vintage approach is suitable for a wide array of modern applications.

Keywords

FOS: Computer and information sciences, spectral clustering, Statistics, factor analysis, Mathematics - Statistics Theory, Statistics Theory (math.ST), Methodology (stat.ME), orthoblique, independent component analysis, little Jiffy, FOS: Mathematics, Statistics - Methodology

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    21
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
21
Top 10%
Top 10%
Top 10%
Green