
doi: 10.1093/jmcb/mjx018
pmid: 28486585
Pigs lack functional uncoupling protein 1 (UCP1) making them susceptible to cold. Nevertheless, several pig breeds are known to be cold resistant. The molecular mechanism(s) enabling such adaptation are currently unknown. Here, we show that this resistance is not dependent on shivering, but rather depends on UCP3 and white adipose tissue (WAT) browning. In two cold-resistant breeds (Tibetan and Min), but not a cold-sensitive breed (Bama), WAT browning was induced after cold exposure. Beige adipocytes from Tibetan pigs exhibited greater oxidative capacity than those from Bama pigs. Notably, UCP3 expression was significantly increased only in cold-resistant breeds, and knockdown of UCP3 expression in Tibetan adipocytes phenocopied Bama adipocytes in culture. Moreover, the eight dominant pig breeds found across China can be classified into cold-sensitive and cold-resistant breeds based on the UCP3 cDNA sequence. This study indicates that UCP3 has contributed to the evolution of cold resistance in the pig and overturns the orthodoxy that UCP1 is the only thermogenic uncoupling protein.
Swine, Adipose Tissue, White, Gene Expression Profiling, Adaptation, Biological, Subcutaneous Fat, Thermogenesis, Cold Temperature, Animals, Uncoupling Protein 3, Adipocytes, Beige, Oxidation-Reduction
Swine, Adipose Tissue, White, Gene Expression Profiling, Adaptation, Biological, Subcutaneous Fat, Thermogenesis, Cold Temperature, Animals, Uncoupling Protein 3, Adipocytes, Beige, Oxidation-Reduction
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 84 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
