Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Antimicro...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Antimicrobial Chemotherapy
Article . 2022 . Peer-reviewed
License: CC BY NC
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2022
License: CC BY NC
Data sources: PubMed Central
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Hal
Article . 2022
Data sources: Hal
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL-UPMC
Article . 2022
Data sources: HAL-UPMC
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Activity of mecillinam against carbapenem-resistant Enterobacterales

Authors: Emeraud, Cécile; Godmer, Alexandre; Girlich, Delphine; Vanparis, Océane; Mahamdi, Fériel; Creton, Elodie; Jousset, Agnès; +3 Authors

Activity of mecillinam against carbapenem-resistant Enterobacterales

Abstract

Abstract Background Despite the fact that carbapenem-resistant Enterobacterales (CRE) mostly cause urinary tract infections (UTIs), only few studies have focused on the efficacity of mecillinam against these CRE. Objectives To evaluate the mecillinam susceptibility of a huge collection of CRE, including carbapenemase-producing Enterobacterales (CPE) and non-CPE (ESBL and AmpC producers with decreased permeability of the outer membrane). Methods A total of 8310 non-duplicate clinical CRE, including 4042 OXA-48-like producers, 1094 NDM producers, 411 VIM producers, 174 KPC producers, 42 IMI producers, 153 multiple-carbapenemase producers and 45 isolates producing other types of carbapenemases (such as IMP-like enzymes or GES-5), were included in the study. WGS was performed on all CPE using Illumina technology. Categorization of susceptibility to mecillinam was performed using disc diffusion (mecillinam discs at 10 μg; I2A, France) according to EUCAST recommendations. The results were interpreted according to EUCAST guidelines (S ≥15 mm). Results Significantly higher susceptibility rates were observed for carbapenem-resistant Proteus spp. (85%) and carbapenem-resistant Escherichia coli (84%), which are the two most common species responsible for UTIs, than for Klebsiella pneumoniae (67%), Enterobacter cloacae complex (75%), Citrobacter spp. (65%), Serratia spp. (34%) and Morganella morganii (12%). Susceptibility rates were 84%, 71% and 91% for OXA-48-like, NDM and IMI producers and 70% for non-CPE CRE. Mecillinam was less active against VIM and KPC producers (14% and 0%, respectively). Conclusions Mecillinam might be an alternative for the treatment of infections due to CRE, particularly UTIs, except for VIM and KPC producers and for M. morganii and Serratia spp species.

Country
France
Keywords

Enterobacteriaceae Infections, Amdinocillin, Microbial Sensitivity Tests, beta-Lactamases, Bacterial Proteins, Carbapenems, Urinary Tract Infections, Escherichia coli, Humans, [SDV.MP.BAC] Life Sciences [q-bio]/Microbiology and Parasitology/Bacteriology, Original Research

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Top 10%
Average
Top 10%
Green
hybrid