
arXiv: 1610.06586
Abstract A cycle is algebraically trivial if it can be exhibited as the difference of two fibers in a family of cycles parameterized by a smooth integral scheme. Over an algebraically closed field, it is a result of Weil that it suffices to consider families of cycles parameterized by curves, or by abelian varieties. In this article, we extend these results to arbitrary base fields. The strengthening of these results turns out to be a key step in our work elsewhere extending Murre’s results on algebraic representatives for varieties over algebraically closed fields to arbitrary perfect fields.
Mathematics - Algebraic Geometry, 14C25, 14C05, 14C15, 14G27, 14K99, FOS: Mathematics, Algebraic Geometry (math.AG)
Mathematics - Algebraic Geometry, 14C25, 14C05, 14C15, 14G27, 14K99, FOS: Mathematics, Algebraic Geometry (math.AG)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
