
arXiv: 1602.03463
To an exact endofunctor of a triangulated category with a split-generator, the notion of entropy is given by Dimitrov-Haiden-Katzarkov-Kontsevich, which is a (possibly negative infinite) real-valued function of a real variable. In this paper, we propose a conjecture which naturally generalizes the theorem by Gromov-Yomdin, and show that the categorical entropy of a surjective endomorphism of a smooth projective variety is equal to its topological entropy. Moreover, we compute the entropy of autoequivalences of the derived category in the case of the ample canonical or anti-canonical sheaf.
11 pages. v2: corrected typos, added explanations in the proof of the main result, v3: added footnotes in page 8
Mathematics - Algebraic Geometry, FOS: Mathematics, Dynamical Systems (math.DS), Mathematics - Dynamical Systems, Algebraic Geometry (math.AG)
Mathematics - Algebraic Geometry, FOS: Mathematics, Dynamical Systems (math.DS), Mathematics - Dynamical Systems, Algebraic Geometry (math.AG)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 11 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
