
arXiv: 1304.4808
We study a Laplacian operator related to the characteristic cohomology of a smooth manifold endowed with a distribution. We prove that this Laplacian does not behave very well: it is not hypoelliptic in general and does not respect the bigrading on forms in a complex setting. We also discuss the consequences of these negative results for a conjecture of P. Griffiths, concerning the characteristic cohomology of period domains.
Mathematics - Differential Geometry, Differential Geometry (math.DG), FOS: Mathematics
Mathematics - Differential Geometry, Differential Geometry (math.DG), FOS: Mathematics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
