Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
International Mathematics Research Notices
Article . 2008 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2007
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Stacky Lie Groups

Authors: Blohmann, Christian;
Abstract

Presentations of smooth symmetry groups of differentiable stacks are studied within the framework of the weak 2-category of Lie groupoids, smooth principal bibundles, and smooth biequivariant maps. It is shown that principality of bibundles is a categorical property which is sufficient and necessary for the existence of products. Stacky Lie groups are defined as group objects in this weak 2-category. Introducing a graphic notation, it is shown that for every stacky Lie monoid there is a natural morphism, called the preinverse, which is a Morita equivalence if and only if the monoid is a stacky Lie group. As example we describe explicitly the stacky Lie group structure of the irrational Kronecker foliation of the torus.

40 pages; definition of group objects in higher categories added; coherence relations for groups in 2-categories given (section 4)

Keywords

Mathematics - Differential Geometry, High Energy Physics - Theory, 20N99, Differential Geometry (math.DG), High Energy Physics - Theory (hep-th), 20N99; 18B40, 58A03, 58H05, FOS: Mathematics, FOS: Physical sciences, Mathematics - Category Theory, Category Theory (math.CT), 18B40, 58A03, 58H05

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Top 10%
Average
Average
Green