Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Integrative and Comp...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Integrative and Comparative Biology
Article . 2013 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The Role of Methylation of DNA in Environmental Adaptation

Authors: Kevin B. Flores; Gro V. Amdam; Florian Wolschin;

The Role of Methylation of DNA in Environmental Adaptation

Abstract

Methylation of DNA is an epigenetic mechanism that influences patterns of gene expression. DNA methylation marks contribute to adaptive phenotypic variation but are erased during development. The role of DNA methylation in adaptive evolution is therefore unclear. We propose that environmentally-induced DNA methylation causes phenotypic heterogeneity that provides a substrate for selection via forces that act on the epigenetic machinery. For example, selection can alter environmentally-induced methylation of DNA by acting on the molecular mechanisms used for the genomic targeting of DNA methylation. Another possibility is that specific methylation marks that are environmentally-induced, yet non-heritable, could influence preferential survival and lead to consistent methylation of the same genomic regions over time. As methylation of DNA is known to increase the likelihood of cytosine-to-thymine transitions, non-heritable adaptive methylation marks can drive an increased likelihood of mutations targeted to regions that are consistently marked across several generations. Some of these mutations could capture, genetically, the phenotypic advantage of the epigenetic mark. Thereby, selectively favored transitory alterations in the genome invoked by DNA methylation could ultimately become selectable genetic variation through mutation. We provide evidence for these concepts using examples from different taxa, but focus on experimental data on large-scale DNA sequencing that expose between-group genetic variation after bidirectional selection on honeybees, Apis mellifera.

Keywords

Evolution, Molecular, Phenotype, Base Sequence, Genome, Insect, Mutation, Animals, Genetic Variation, Bees, DNA Methylation, Environment, Adaptation, Physiological

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    112
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
112
Top 1%
Top 10%
Top 10%
bronze