Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Archivio Istituziona...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Human Reproduction Update
Article . 2010 . Peer-reviewed
Data sources: Crossref
versions View all 10 versions
addClaim

Bone fractures after menopause

Authors: D. H. Barlow; P. Bouchard; M. L. Brandi; J. L. Evers; A. Glasier; E. Negri; S. E. Papapoulos; +10 Authors

Bone fractures after menopause

Abstract

Every year 30% of individuals above age 65 fall, and falls are the principal cause of bone fractures. To reduce fracture incidence requires both prevention of falls and maintenance of bone strength.PubMed searches were performed, for studies of the epidemiology of fractures, bone physiology, endocrine effects, osteoporosis measurement, genetics, prevention and effectiveness. Topic summaries were presented to the Workshop Group and omissions or disagreements were resolved by discussion.Ageing reduces bone strength in post-menopausal women because estrogen deficiency causes accelerated bone resorption. Bone mineral density (BMD) decreased more than 2.5 standard deviation below the mean of healthy young adults defines osteoporosis, a condition associated with an increased risk of fractures. Risk factors such as age and previous fracture are combined with BMD for a more accurate prediction of fracture risk. The most widely used assessment tool is FRAX™ which combines clinical risk factors and femoral neck BMD. General preventive measures include physical exercise to reduce the risk of falling and vitamin D to facilitate calcium absorption. Pharmacological interventions consist mainly in the administration of inhibitors of bone resorption. Randomized controlled trials show treatment improves BMD, and may reduce the relative fracture risk by about 50% for vertebral, 20-25% for non-vertebral and up to 40% for hip fractures although the absolute risk reductions are much lower.Although diagnosis of osteoporosis is an important step, the threshold for treatment to prevent fractures depends on additional clinical risk factors. None of the presently available treatment options provide complete fracture prevention.

Countries
Italy, United Kingdom, Switzerland, Netherlands, Italy
Keywords

616.8, Bone Resorption/drug therapy/epidemiology/prevention & control, Fractures, Bone, Ageing; Bone fractures; Bone mineral density; Falls; Osteoporosis, Cost of Illness, Bone Density, Risk Factors, 616, falls, Prevalence, Humans, Bone Resorption, Osteoporosis, Postmenopausal, Fractures, Bone/epidemiology/etiology/prevention & control, Age Factors, bone fractures, Bone Density/drug effects, Osteoporosis, Postmenopausal/complications/genetics, osteoporosis, Postmenopause, ageing, Female, bone mineral density

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    30
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
30
Top 10%
Top 10%
Top 10%
Green
bronze