
arXiv: 2006.16516
AbstractThe study of network formation is pervasive in economics, sociology, and many other fields. In this article, we model network formation as a ‘choice’ that is made by nodes of a network to connect to other nodes. We study these ‘choices’ using discrete-choice models, in which agents choose between two or more discrete alternatives. We employ the ‘repeated-choice’ (RC) model to study network formation. We argue that the RC model overcomes important limitations of the multinomial logit (MNL) model, which gives one framework for studying network formation, and that it is well-suited to study network formation. We also illustrate how to use the RC model to accurately study network formation using both synthetic and real-world networks. Using edge-independent synthetic networks, we also compare the performance of the MNL model and the RC model. We find that the RC model estimates the data-generation process of our synthetic networks more accurately than the MNL model. Using a patent citation network, which forms sequentially, we present a case study of a qualitatively interesting scenario—the fact that new patents are more likely to cite older, more cited, and similar patents—for which employing the RC model yields interesting insights.
Social and Information Networks (cs.SI), FOS: Computer and information sciences, Physics - Physics and Society, FOS: Physical sciences, Computer Science - Social and Information Networks, Machine Learning (stat.ML), Physics and Society (physics.soc-ph), FOS: Economics and business, Statistics - Machine Learning, Economics - Theoretical Economics, Theoretical Economics (econ.TH)
Social and Information Networks (cs.SI), FOS: Computer and information sciences, Physics - Physics and Society, FOS: Physical sciences, Computer Science - Social and Information Networks, Machine Learning (stat.ML), Physics and Society (physics.soc-ph), FOS: Economics and business, Statistics - Machine Learning, Economics - Theoretical Economics, Theoretical Economics (econ.TH)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
