
doi: 10.1093/bjps/axt030
We give a few results concerning the notions of causal completability and causal closedness of classical probability spaces (Hofer-Szabo, Redei & Szabo [1999], Gyenis & Redei [2004]). Answering a question from Hofer-Szabo et al. [1999], we prove that any classical probability space has a causally closed extension. We also employ the notion of causal up-to-n-closedness (Wronski & Marczyk [2010a]) to show that any finite classical probability space with rational probabilities on the atoms of the event algebra can be extended to a finite space which is causally up-to-3-closed. Lastly, we prove that any classical probability space can be extended to a space in which all correlations between events which are logically independent modulo measure zero event have a countably infinite common cause system (for the definition of the latter notion, see Hofer-Szabo & Redei [2004]). Collectively, these results show that it is surprisingly easy to find Reichenbach-style explanations for correlations, underlining doubts as to whether this approach can yield a philosophically relevant account of causality.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 11 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
