Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ British Journal of A...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
British Journal of Anaesthesia
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
British Journal of Anaesthesia
Article . 2004 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Local anaesthetic sensitivities of cloned HERG channels from human heart: comparison with HERG/MiRP1 and HERG/MiRP1 T8A

Authors: P, Friederich; A, Solth; S, Schillemeit; D, Isbrandt;

Local anaesthetic sensitivities of cloned HERG channels from human heart: comparison with HERG/MiRP1 and HERG/MiRP1 T8A

Abstract

Myocardial potassium channels are complexes formed by different subunits. The subunit composition may influence the cardiotoxic action of local anaesthetics. The effects of amide local anaesthetics on HERG channels co-expressed with the putative subunit MiRP1 have not been established. It is also unclear if the common polymorphism MiRP1(T8A) that predisposes individuals to drug-induced cardiac arrhythmia increases local-anaesthetic sensitivity of HERG/MiRP1 channels. This may suggest the presence of genetic risk factors for local-anaesthetic-induced cardiac arrhythmia.Whole-cell patch-clamp recordings and site-directed mutagenesis were combined to compare local anaesthetic sensitivities of cloned and mutated human potassium channel subunits. The ion channels were activated by a protocol that approximated ventricular action potentials.The amide local anaesthetics bupivacaine, levobupivacaine and ropivacaine inhibited HERG channels at toxicologically relevant concentrations, with IC(50) values of 20 (SEM 2) micro M (n=29), 10 (1) micro M (n=40) and 20 (2) micro M (n=49), respectively. Hill coefficients were close to unity. There were no indications of qualitative differences in channel inhibition between the three anaesthetics. The putative subunit MiRP1 did not alter local anaesthetic sensitivity of HERG channels. The common single nucleotide polymorphism producing MiRP1(T8A) did not increase local anaesthetic sensitivity of HERG/MiRP1 channels.Amide local anaesthetics target HERG and HERG/MiRP1 channels with identical potency. The effects on these ion currents may significantly contribute to local-anaesthetic-induced cardiac arrhythmia. MiRP1(T8A) does not seem to confer an increased risk of severe cardiac side-effects to carriers of this common polymorphism.

Keywords

ERG1 Potassium Channel, Patch-Clamp Techniques, Dose-Response Relationship, Drug, Myocardium, Heart, CHO Cells, Amides, Bupivacaine, Ether-A-Go-Go Potassium Channels, DNA-Binding Proteins, Electrophysiology, Cricetulus, Cricetinae, Mutagenesis, Site-Directed, Animals, Humans, Anesthetics, Local, Cloning, Molecular, Cation Transport Proteins, Levobupivacaine

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    41
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
41
Average
Top 10%
Top 10%
hybrid