Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biostatisticsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biostatistics
Article . 2024 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref
Biostatistics
Article . 2024
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Functional support vector machine

Authors: Shanghong, Xie; R Todd, Ogden;

Functional support vector machine

Abstract

Abstract Linear and generalized linear scalar-on-function modeling have been commonly used to understand the relationship between a scalar response variable (e.g. continuous, binary outcomes) and functional predictors. Such techniques are sensitive to model misspecification when the relationship between the response variable and the functional predictors is complex. On the other hand, support vector machines (SVMs) are among the most robust prediction models but do not take account of the high correlations between repeated measurements and cannot be used for irregular data. In this work, we propose a novel method to integrate functional principal component analysis with SVM techniques for classification and regression to account for the continuous nature of functional data and the nonlinear relationship between the scalar response variable and the functional predictors. We demonstrate the performance of our method through extensive simulation experiments and two real data applications: the classification of alcoholics using electroencephalography signals and the prediction of glucobrassicin concentration using near-infrared reflectance spectroscopy. Our methods especially have more advantages when the measurement errors in functional predictors are relatively large.

Related Organizations
Keywords

Principal Component Analysis, Alcoholism, Support Vector Machine, Spectroscopy, Near-Infrared, Models, Statistical, Humans, Electroencephalography, Computer Simulation

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Top 10%
Average
Top 10%
Related to Research communities
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!