
AbstractFor many high-dimensional genomic and epigenomic datasets, the outcome of interest is ordinal. While these ordinal outcomes are often thought of as the observed cutpoints of some latent continuous variable, some ordinal outcomes are truly discrete and are comprised of the subjective combination of several factors. The nonlinear stereotype logistic model, which does not assume proportional odds, was developed for these ‘assessed’ ordinal variables. It has previously been extended to the frequentist high-dimensional feature selection setting, but the Bayesian framework provides some distinct advantages in terms of simultaneous uncertainty quantification and variable selection. Here, we review the stereotype model and Bayesian variable selection methods and demonstrate how to combine them to select genomic features associated with discrete ordinal outcomes. We compared the Bayesian and frequentist methods in terms of variable selection performance. We additionally applied the Bayesian stereotype method to an acute myeloid leukemia RNA-sequencing dataset to further demonstrate its variable selection abilities by identifying features associated with the European LeukemiaNet prognostic risk score.
Logistic Models, Risk Factors, Bayes Theorem, Genomics
Logistic Models, Risk Factors, Bayes Theorem, Genomics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
