Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ American Journal of ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
American Journal of Clinical Nutrition
Article . 2008 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IRIS Cnr
Article . 2008
Data sources: IRIS Cnr
CNR ExploRA
Article . 2008
Data sources: CNR ExploRA
versions View all 7 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Role of glycemic index and glycemic load in the healthy state, in prediabetes, and in diabetes

Authors: Riccardi G; Rivellese A; Giacco R;

Role of glycemic index and glycemic load in the healthy state, in prediabetes, and in diabetes

Abstract

The choice of carbohydrate-rich foods in the habitual diet should take into account not only their chemical composition but also their ability to influence postprandial glycemia (glycemic index). Fiber-rich foods generally have a low glycemic index (GI), although not all foods with a low GI necessarily have high fiber content. Several beneficial effects of low-GI, high-fiber diets have been shown, including lower postprandial glucose and insulin responses, an improved lipid profile, and, possibly, reduced insulin resistance. In nondiabetic persons, suggestive evidence is available from epidemiologic studies that a diet based on carbohydrate-rich foods with a low-GI, high-fiber content may protect against diabetes or cardiovascular disease. However, no intervention studies have so far evaluated the potential of low-GI, high-fiber diets to reduce the risk of diabetes, although in studies aimed at diabetes prevention by lifestyle modifications, an increase in fiber consumption was often part of the intervention. In relation to prevention of cardiovascular disease, intervention studies evaluating the effect of a low-GI diet on clinical events are not available; moreover, the results of the few available intervention studies evaluating the effects of GI on the cardiovascular disease risk factor profile are not always concordant. The best evidence of the clinical usefulness of GI is available in diabetic patients in whom low-GI foods have consistently shown beneficial effects on blood glucose control in both the short-term and the long-term. In these patients, low-GI foods are suitable as carbohydrate-rich choices, provided other attributes of the foods are appropriate.

Country
Italy
Keywords

Blood Glucose, Dietary Fiber, Health Status, dietary fiber, Diabetes mellitus, Diabetes Mellitus, Type 2, cardiovascular disease, Glycemic Index, Area Under Curve, Diet, Diabetic, Glucose Intolerance, dietary carbohydrates, glycemic index, Humans, Insulin, Triglycerides

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    201
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
201
Top 1%
Top 1%
Top 1%
bronze