
Pisum sativum L. (pea) seed is a source of carbohydrate and protein for the developing plant. By studying pea seeds inoculated by the cytokinin-producing bacterium, Rhodococcus fascians , we sought to determine the impact of both an epiphytic (avirulent) strain and a pathogenic strain on source-sink activity within the cotyledons during and following germination.Bacterial spread was monitored microscopically, and real-time reverse transcription-quantitative PCR was used to determine the expression of cytokinin biosynthesis, degradation and response regulator gene family members, along with expression of family members of SWEET , SUT , CWINV and AAP genes - gene families identified initially in pea by transcriptomic analysis. The endogenous cytokinin content was also determined.The cotyledons infected by the virulent strain remained intact and turned green, while multiple shoots were formed and root growth was reduced. The epiphytic strain had no such marked impact. Isopentenyl adenine was elevated in the cotyledons infected by the virulent strain. Strong expression of RfIPT , RfLOG and RfCKX was detected in the cotyledons infected by the virulent strain throughout the experiment, with elevated expression also observed for PsSWEET , PsSUT and PsINV gene family members. The epiphytic strain had some impact on the expression of these genes, especially at the later stages of reserve mobilization from the cotyledons.The pathogenic strain retained the cotyledons as a sink tissue for the pathogen rather than the cotyledon converting completely to a source tissue for the germinating plant. We suggest that the interaction of cytokinins, CWINVs and SWEETs may lead to the loss of apical dominance and the appearance of multiple shoots.
Sucrose transporter, Cytokinins, Pisum sativum L., Cytokinin, Germination, Rhodococcus fascians, Polymerase Chain Reaction, Rhodococcus, Pisum sativum, Sink and source, Plant Diseases, Seed, Amino acid transporter, Pea, Host-Pathogen Interactions, Seeds, Apical dominance, Cell wall invertase, Cytokinin oxidase/dehydro-genase, sweet, Cotyledon
Sucrose transporter, Cytokinins, Pisum sativum L., Cytokinin, Germination, Rhodococcus fascians, Polymerase Chain Reaction, Rhodococcus, Pisum sativum, Sink and source, Plant Diseases, Seed, Amino acid transporter, Pea, Host-Pathogen Interactions, Seeds, Apical dominance, Cell wall invertase, Cytokinin oxidase/dehydro-genase, sweet, Cotyledon
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 30 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
