
arXiv: 2308.15026
We prove new bounds for Bessel heat kernels and Bessel heat kernels subordinated by stable subordinators. In particular, we provide 3G inequalities in the subordinated case.
3G inequality, Mathematics - Analysis of PDEs, Mathematics - Classical Analysis and ODEs, Probability (math.PR), Transition functions, generators and resolvents, Classical Analysis and ODEs (math.CA), FOS: Mathematics, Bessel heat kernel, stable subordinator, Mathematics - Probability, Heat kernel, Analysis of PDEs (math.AP)
3G inequality, Mathematics - Analysis of PDEs, Mathematics - Classical Analysis and ODEs, Probability (math.PR), Transition functions, generators and resolvents, Classical Analysis and ODEs (math.CA), FOS: Mathematics, Bessel heat kernel, stable subordinator, Mathematics - Probability, Heat kernel, Analysis of PDEs (math.AP)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
