Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Representation Theor...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The adjoint representation in rings of functions

Authors: Peter E. Trapa; Eric Sommers;

The adjoint representation in rings of functions

Abstract

Let G G be a connected, simple Lie group of rank n n defined over the complex numbers. To a parabolic subgroup P P in G G of semisimple rank r r , one can associate n − r n-r positive integers coming from the theory of hyperplane arrangements (see P. Orlik and L. Solomon, Combinatorics and topology of complements of hyperplanes, Invent. Math. 56 (1980), 167-189; Coxeter arrangements, in Proc. of Symposia in Pure Math., Vol. 40 (1983) Part 2, 269-291). In the case r = 0 r=0 , these numbers are just the usual exponents of the Weyl group W W of G G . These n − r n-r numbers are called coexponents. Spaltenstein and Lehrer-Shoji have proven the observation of Spaltenstein that the degrees in which the reflection representation of W W occurs in a Springer representation associated to P P are exactly (twice) the coexponents (see N. Spaltenstein, On the reflection representation in Springer’s theory, Comment. Math. Helv. 66 (1991), 618-636 and G. I. Lehrer and T. Shoji, On flag varieties, hyperplane complements and Springer representations of Weyl groups, J. Austral. Math. Soc. (Series A) 49 (1990), 449-485). On the other hand, Kostant has shown that the degrees in which the adjoint representation of G G occurs in the regular functions on the variety of regular nilpotents in g := Lie ⁡ ( G ) \mathfrak {g}:=\operatorname {Lie}(G) are the usual exponents (see B. Kostant, Lie group representations on polynomial rings, Amer. J. Math. 85 (1963), 327-404). In this paper, we extend Kostant’s result to Richardson orbits (or orbit covers) and we get a statement which is dual to Spaltenstein’s. We will show that the degrees in which the adjoint representation of G G occurs in the regular functions on an orbit cover of a Richardson orbit associated to P P are also the coexponents.

Related Organizations
Keywords

Semisimple Lie groups and their representations, Springer representation, adjoint representation, Algebraic combinatorics, hyperplane arrangements, simple Lie group, Richardson orbits

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Average
Average
Average
Upload OA version
Are you the author? Do you have the OA version of this publication?