Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Transactions of the ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Transactions of the American Mathematical Society
Article
License: publisher-specific, author manuscript
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://dx.doi.org/10.48550/ar...
Article . 2011
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Bounded mean oscillation and the uniqueness of active scalar equations

Authors: Jacob Bedrossian; Jacob Bedrossian; Jonas Azzam; Jonas Azzam;

Bounded mean oscillation and the uniqueness of active scalar equations

Abstract

We consider a number of uniqueness questions for several wide classes of active scalar equations, unifying and generalizing the techniques of several authors. As special cases of our results, we provide a significantly simplified proof to the known uniqueness result for the 2D Euler equations in L 1 ∩ B M O L^1 \cap BMO and provide a mild improvement to the recent results of Rusin for the 2D inviscid surface quasi-geostrophic (SQG) equations, which are now to our knowledge the best results known for this model. We also obtain what are (to our knowledge) the strongest known uniqueness results for the Patlak-Keller-Segel models with nonlinear diffusion. We obtain these results via technical refinements of energy methods which are well-known in the L 2 L^2 setting but are less well-known in the H ˙ − 1 \dot {H}^{-1} setting. The H ˙ − 1 \dot {H}^{-1} method can be considered a generalization of Yudovich’s classical method and is naturally applied to equations such as the Patlak-Keller-Segel models with nonlinear diffusion and other variants. Important points of our analysis are an L p L^p - B M O BMO interpolation lemma and a Sobolev embedding lemma which shows that velocity fields v v with ∇ v ∈ B M O \nabla v \in BMO are locally log-Lipschitz; the latter is known in harmonic analysis but does not seem to have been connected to this setting.

Keywords

Mathematics - Analysis of PDEs, FOS: Mathematics, Analysis of PDEs (math.AP)

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Top 10%
Top 10%
Average
Green
hybrid