Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Transactions of the ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://dx.doi.org/10.48550/ar...
Article . 2007
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

On adapted coordinate systems

Authors: Isroil A. Ikromov; Detlef Müller;

On adapted coordinate systems

Abstract

The notion of an adapted coordinate system for a given real-analytic function, introduced by V. I. Arnol’d, plays an important role, for instance, in the study of asymptotic expansions of oscillatory integrals. In two dimensions, A. N. Varchenko gave sufficient conditions for the adaptness of a given coordinate system and proved the existence of an adapted coordinate system for analytic functions without multiple components. Varchenko’s proof is based on a two-dimensional resolution of singularities result. In this article, we present a more elementary approach to these results, which is based on the Puiseux series expansion of roots of the given function. This approach is inspired by the work of D. H. Phong and E. M. Stein on the Newton polyhedron and oscillatory integral operators. It applies to arbitrary real-analytic functions, and even to arbitrary smooth functions of finite type. In particular, we show that Varchenko’s conditions are in fact necessary and sufficient for the adaptedness of a given coordinate system and that adapted coordinates always exist in two dimensions, even in the smooth, finite type setting. For analytic functions, a construction of adapted coordinates by means of Puiseux series expansions of roots has already been carried out in work by D. H. Phong, E. M. Stein and J. A. Sturm on the growth and stability of real-analytic function, as we learned after the completion of this paper. In contrast to their work, however, our proof more closely follows Varchenko’s algorithm for the construction of an adapted coordinate system, which turns out to be useful for the extension to the smooth setting.

Related Organizations
Keywords

Mathematics - Classical Analysis and ODEs, 35G05, Classical Analysis and ODEs (math.CA), FOS: Mathematics, 35D05, 35D05; 35D10; 35G05, 35D10

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    29
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
29
Top 10%
Top 10%
Top 10%
Green
hybrid