
A directed space is a partially ordered topological space in which each two elements have a common predecessor. It is a consequence of a theorem of A. D. Wallace that a compact directed space is acyclic if each of its principal ideals is acyclic. This result is extended by considering the situation where at most finitely many principal ideals are not acyclic. It turns out that some of the elements which generate nonacyclic principal ideals must be maximal and that the p p th cohomology group of the space must contain the p p th cohomology group of such a principal ideal as a direct summand. In the concluding sections it is shown that these spaces can be made acyclic by dividing out a closed ideal which contains all of the nonacyclic principal ideals, and some results on the acyclicity properties of minimal partial orders on compact spaces are proved.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
