Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the A...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
Proceedings of the American Mathematical Society
Article . 1982 . Peer-reviewed
Data sources: Crossref
Proceedings of the American Mathematical Society
Article . 1982 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Local isometries of compact metric spaces

Authors: Aleksander Całka;

Local isometries of compact metric spaces

Abstract

By local isometries we mean mappings which locally preserve distances. A few of the main results are: 1. For each local isometry f f of a compact metric space ( M , ρ ) (M,\rho ) into itself there exists a unique decomposition of M M into disjoint open sets, M = M 0 f ∪ ⋯ ∪ M n f M = M_0^f \cup \cdots \cup M_n^f , ( 0 ⩽ n > ∞ ) (0 \leqslant n > \infty ) such that (i) f ( M 0 f ) = M 0 f f(M_0^f) = M_0^f , and (ii) f ( M i f ) = M i − 1 f f(M_i^f) = M_{i - 1}^f and M i f ≠ ∅ M_i^f \ne \emptyset for each i , 1 ⩽ i ⩽ n i, 1 \leqslant i \leqslant n . 2. Each local isometry of a metric continuum into itself is a homeomorphism onto itself. 3. Each nonexpansive local isometry of a metric continuum into itself is an isometry onto itself. 4. Each local isometry of a convex metric continuum into itself is an isometry onto itself.

Keywords

local isometry, convex metric continuum, Special maps on metric spaces, Compact (locally compact) metric spaces, decomposition of the space, locally nonexpansive mapping

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
bronze