Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the A...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
Proceedings of the American Mathematical Society
Article . 1980 . Peer-reviewed
Data sources: Crossref
Proceedings of the American Mathematical Society
Article . 1980 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

On the integrability of the maximal ergodic function

Authors: Nghiêm Đăng-Ngọc;

On the integrability of the maximal ergodic function

Abstract

Let G = R d G = {{\mathbf {R}}^d} or Z d {{\mathbf {Z}}^d} and consider an ergodic measure-preserving action of G on a probability space ( X , A , P ) (X,\mathfrak {A},P) , let f ∈ L 1 ( X , P ) f \in {L^1}(X,P) and Mf be its maximal ergodic function. Our purpose is to prove the converse of the following theorem of N. Wiener: if | f | log + | f | |f|{\log ^ + }|f| is integrable then Mf is integrable. For the particular case G = Z G = {\mathbf {Z}} this result was already obtained by D. Ornstein whose proof is based on induced transformations and seems to be specific to Z, our proof is based on a result of E. M. Stein on the Hardy-Littlewood maximal function on R d {{\mathbf {R}}^d} and its analogue on Z d {{\mathbf {Z}}^d} .

Keywords

maximal ergodic function, induced transformations, ergodic measure-preserving action, General groups of measure-preserving transformations, integrability, ergodic theorem

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
bronze