
It is shown that there exists an ordered abelian group that has no smallest positive element and that has no sequence of nonzero elements converging to zero. Some formulae for the rank of ordered abelian groups have been derived and a necessary condition for an order type to be rank of an ordered abelian group has been discussed. These facts have been translated to the spectrum of a valuation ring using some well-known results in valuation theory.
ordered abelian group, Valuation rings, Ordered groups (group-theoretic aspects), order type, Ordered abelian groups, Riesz groups, ordered linear spaces
ordered abelian group, Valuation rings, Ordered groups (group-theoretic aspects), order type, Ordered abelian groups, Riesz groups, ordered linear spaces
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
