
doi: 10.1090/qam/1417237
We find and classify all first-order conservation laws in the Stroh formalism. All possible non-semisimple degeneracies are considered. The laws are found to depend on three arbitrary analytic functions. In some instances, there is an “extra” law which is quadratic in ∇ u \nabla u . Separable and inseparable canonical forms for the stored energy function are given for each type of degeneracy and they are used to compute the conservation laws. The existence of a real Stroh eigenvector is found to be a necessary and sufficient condition for separability. The laws themselves are stated in terms of the Stroh eigenvectors.
first-order conservation laws, Classical linear elasticity, stored energy function, real Stroh eigenvector, Anisotropy in solid mechanics, degeneracy, necessary and sufficient condition for separability
first-order conservation laws, Classical linear elasticity, stored energy function, real Stroh eigenvector, Anisotropy in solid mechanics, degeneracy, necessary and sufficient condition for separability
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
