
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>We study intersection theory for differential algebraic varieties. Particularly, we study families of differential hypersurface sections of arbitrary affine differential algebraic varieties over a differential field. We prove the differential analogue of Bertini’s theorem, namely that for an arbitrary geometrically irreducible differential algebraic variety which is not an algebraic curve, generic hypersurface sections are geometrically irreducible and codimension one. Surprisingly, we prove a stronger result in the case that the order of the differential hypersurface is at least one; namely that the generic differential hypersurface sections of an irreducible differential algebraic variety are irreducible and codimension one. We also calculate the Kolchin polynomials of the intersections and prove several other results regarding intersections of differential algebraic varieties.
Mathematics - Algebraic Geometry, FOS: Mathematics, Mathematics - Logic, Logic (math.LO), Algebraic Geometry (math.AG)
Mathematics - Algebraic Geometry, FOS: Mathematics, Mathematics - Logic, Logic (math.LO), Algebraic Geometry (math.AG)
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
