
arXiv: 2209.02640
We explain connections among several, a priori unrelated, areas of mathematics: combinatorics, algebraic statistics, topology and enumerative algebraic geometry. Our focus is on discrete invariants, strongly related to the theory of Lorentzian polynomials. The main concept joining the mentioned fields is a linear space of matrices.
Mathematics - Algebraic Geometry, FOS: Mathematics, Mathematics - Combinatorics, Combinatorics (math.CO), Algebraic Geometry (math.AG)
Mathematics - Algebraic Geometry, FOS: Mathematics, Mathematics - Combinatorics, Combinatorics (math.CO), Algebraic Geometry (math.AG)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
