Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Mathematics of Compu...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Mathematics of Computation
Article
License: publisher-specific, author manuscript
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2018
Data sources: zbMATH Open
https://dx.doi.org/10.48550/ar...
Article . 2014
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
DBLP
Article
Data sources: DBLP
versions View all 5 versions
addClaim

Nuclear norm of higher-order tensors

Authors: Shmuel Friedland; Lek-Heng Lim;

Nuclear norm of higher-order tensors

Abstract

We establish several mathematical and computational properties of the nuclear norm for higher-order tensors. We show that like tensor rank, tensor nuclear norm is dependent on the choice of base field --- the value of the nuclear norm of a real 3-tensor depends on whether we regard it as a real 3-tensor or a complex 3-tensor with real entries. We show that every tensor has a nuclear norm attaining decomposition and every symmetric tensor has a symmetric nuclear norm attaining decomposition. There is a corresponding notion of nuclear rank that, unlike tensor rank, is upper semicontinuous. We establish an analogue of Banach's theorem for tensor spectral norm and Comon's conjecture for tensor rank --- for a symmetric tensor, its symmetric nuclear norm always equals its nuclear norm. We show that computing tensor nuclear norm is NP-hard in several sense. Deciding weak membership in the nuclear norm unit ball of 3-tensors is NP-hard, as is finding an $\varepsilon$-approximation of nuclear norm for 3-tensors. In addition, the problem of computing spectral or nuclear norm of a 4-tensor is NP-hard, even if we restrict the 4-tensor to be bi-Hermitian, bisymmetric, positive semidefinite, nonnegative valued, or all of the above. We discuss some simple polynomial-time approximation bounds. As an aside, we show that the nuclear $(p,q)$-norm of a matrix is NP-hard in general but can be computed in polynomial-time if $p=1$, $q = 1$, or $p=q=2$, with closed-form expressions for the nuclear $(1,q)$- and $(p,1)$-norms.

23 pages

Related Organizations
Keywords

FOS: Computer and information sciences, dual norm, Quantum Physics, Vector spaces, linear dependence, rank, lineability, Other matrix algorithms, nuclear decomposition, FOS: Physical sciences, nuclear rank, tensor spectral norm, NP-hard, Computational Complexity (cs.CC), Computer Science - Computational Complexity, tensor nuclear norm, Multilinear algebra, tensor calculus, Norms of matrices, numerical range, applications of functional analysis to matrix theory, 15A69, 47A30, 68Q17, Quantum Physics (quant-ph), tensor rank

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    126
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
126
Top 1%
Top 10%
Top 1%
Green
hybrid