
Given a (bounded affine) permutation f f , we study the positroid Catalan number C f C_f defined to be the torus-equivariant Euler characteristic of the associated open positroid variety. We introduce a class of repetition-free permutations and show that the corresponding positroid Catalan numbers count Dyck paths avoiding a convex subset of the rectangle. We show that any convex subset appears in this way. Conjecturally, the associated q , t q,t -polynomials coincide with the generalized q , t q,t -Catalan numbers that recently appeared in relation to the shuffle conjecture, flag Hilbert schemes, and Khovanov–Rozansky homology of Coxeter links.
Primary: 05A19. Secondary: 14M15, 15B48, 57K18, FOS: Mathematics, Mathematics - Combinatorics, Combinatorics (math.CO)
Primary: 05A19. Secondary: 14M15, 15B48, 57K18, FOS: Mathematics, Mathematics - Combinatorics, Combinatorics (math.CO)
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
