
pmid: 15671756
Influenza A virus subtype H5N1 causes a rapidly fatal systemic disease in domestic poultry and spreads directly from poultry to humans. The aim of this study was to develop a rapid, cost-saving and effective method for influenza A virus subtype H5N1 detection. The selected primer set was used in single-step RT-PCR for simultaneous detection in multiplex format of the 276-, 189-, and 131-bp fragments, corresponding to sequences specific for M, H5 and N1. The amplified DNA fragments were clearly separated by agarose gel electrophoresis. The sensitivity of this assay was about 10(3) copies/microL. Moreover, this method can be applied to detect not only avian but also human influenza A virus subtype H5N1. In conclusion, the highlights of this particular method are its rapidity and cost-effectiveness, thus rendering it feasible and attractive for large-scale screening at times of influenza A virus subtype H5N1 outbreak.
Influenza A Virus, H5N1 Subtype, Reverse Transcriptase Polymerase Chain Reaction, Sensitivity and Specificity, Birds, Influenza A virus, Influenza in Birds, Influenza, Human, Animals, Humans, Chickens
Influenza A Virus, H5N1 Subtype, Reverse Transcriptase Polymerase Chain Reaction, Sensitivity and Specificity, Birds, Influenza A virus, Influenza in Birds, Influenza, Human, Animals, Humans, Chickens
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 58 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
