
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>pmid: 18312151
The analysis of the structure of populations on the basis of genetic data is essential in population genetics. It is used, for instance, to study the evolution of species or to correct for population stratification in association studies. These genetic data, normally based on DNA polymorphisms, may contain irrelevant information that biases the inference of population structure. In this paper we adapt a recently proposed algorithm, named multistart EMA, to be used in the inference of population structure. This algorithm is able to deal with irrelevant information when obtaining the (probabilistic) population partition. Additionally, we present a maker selection test able to obtain the most relevant markers to retrieve that population partition. The proposed algorithm is compared with the widely used STRUCTURE software on the basis of the F(ST) metric and the log-likelihood score. It is shown that the proposed algorithm improves the obtention of the population structure. Moreover, information about relevant markers obtained by the multi-start EMA can be used to improve the results obtained by other methods, correct for population stratification or even also reduce the economical cost of sequencing new samples. The software presented in this paper is available online at http://www.sc.ehu.es/ccwbayes/members/guzman.
Genetic Markers, Polymorphism, Genetic, Models, Genetic, Matemáticas, Genome, Human, Biología, Bayes Theorem, Pattern Recognition, Automated, Genetics, Population, Population Groups, Cluster Analysis, Humans, Algorithms
Genetic Markers, Polymorphism, Genetic, Models, Genetic, Matemáticas, Genome, Human, Biología, Bayes Theorem, Pattern Recognition, Automated, Genetics, Population, Population Groups, Cluster Analysis, Humans, Algorithms
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
