Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Big Dataarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Big Data
Article . 2020 . Peer-reviewed
License: Mary Ann Liebert TDM
Data sources: Crossref
Big Data
Article . 2021
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Online Analytical Processing for Business Intelligence in Big Data

Authors: Jigna Ashish, Patel; Priyanka, Sharma;

Online Analytical Processing for Business Intelligence in Big Data

Abstract

Online analytical processing (OLAP) approach is widely used in business intelligence to cater the multidimensional queries for decades. In this era of cutting-edge technology and the internet, data generation rates have been rising exponentially. Internet of things sensors and social media platforms are some of the major contributors, leading toward the absolute data boom. Storage and speed are the crucial parameters and undoubtedly the burning issues in efficient data handling. The key idea here is to address these two challenges of big data computing in OLAP. In this article, the authors have proposed and implemented OLAP on Hadoop by Indexing (OOHI). OOHI offers a simplified multidimensional model that stores dimensions in the schema server and measures on the Hadoop cluster. Overall setup is divided into various modules, namely: data storage module (DSM), dimension encoding module (DEM), cube segmentation module, segment selection module (SSM), and block selection and process (BSAP) module. Serialization and deserialization concept applied by DSM for storage and retrieval of the data for efficient space utilization. Integer encoding adopted by DEM in dimension hierarchy is selected to escape sparsity problem in multidimensional big data. To reduce search space by chunks of the cube from the queried chunks, SSM plays an important role. Map reduce-based indexing approach and series of seek operations of BSAP module were integrated to achieve parallelism and fault tolerance. Real-time oceanography data and supermarket data sets are applied to demonstrate that OOHI model is data independent. Various test cases are designed to cover the scope of each dimension and volume of data set. Comparative results and performance analytics portray that OOHI outperforms in data storage, dice, slice, and roll-up operations compared with Hadoop based OLAP.

Related Organizations
Keywords

Big Data, Internet, Data Science, Commerce, Information Storage and Retrieval

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!